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Motivation

● Spatial distribution of particle size curves (88 particle sizes, 3340 
samples) 

● Tree species co-occurrence analysis (96 species, 78804 samples) 
● Air quality monitoring, spatial transcriptomics, spatial proteomics, 

etc. 
● We want a scalable 

and interpretable 
method for highly 
multivariate (𝑞 > 30) 
and large (𝑛 > 10000) 
geostatistical data.



Existing multivariate methods
● Spatial factor model (+ NNGP)

o Finley et al. (2015), Tikhonov et al. (2020), Doser et al. (2022)
o Difficult to interpret (a latent process 𝑤 is a linear combination of independent 

latent processes... ) 
o Difficult to fix or assign priors to hyperparameters 
o Choosing the ‘right’ number of factors is another area of research

● Parsimonious cross-covariance matrix function (+ NNGP)
o Bevilacqua et al. (2015), Peruzzi (2024)
o Computational burden and dimension increases quadratically (or more) with 𝑞

● “treed” DAG 
o Peruzzi and Dunson (2022)
o Multiresolution/ recursive scheme scales poorly with 𝑞

● Process-level conditional independence using a graphical model 
o Dey et al. (2022)
o Exhaustive stochastic exploration over sparse graph space is infeasible 



Spanning tree-based approach

● Construct a multivariate process exploiting variable-level conditional 
independence relationships implied by a data generating inter-
variable graph.

● Consider a minimum spanning tree as the backbone of the inter-
variable graph.

● Spanning trees are economical to handle 
○ Span all 𝑞 variables 
○ Include only 𝑞 − 1 edges 
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Spanning tree-based approach

● The spanning tree 𝑇 on variables + a sparse DAG on locations

● For 𝒚 𝑠 = 𝑦1 𝑠 , … , 𝑦𝑞 𝑠
𝑇

, 

ሚ𝑓 𝒚 𝑠 = 𝑓 𝑦1 𝑠 𝑦1 𝑁 𝑠 ෑ

𝑗,𝑘 ∈𝐸𝑇

𝑓 𝑦𝑘 𝑠 𝑦𝑘 𝑁 𝑠 , 𝑦𝑗 𝑠 , 𝑦𝑗 𝑁𝑢 𝑠

 
o Variable 𝑘 is independent to other 

variables conditional on variable 𝑗 
connected by 𝑇

o Different sets of neighbors from 
the parent variable 

o Useful when data are misaligned



Properties

● Any variable can serve as the root; No arbitrary variable ordering.
● Resulting multivariate process preserves process-level conditional 

independence specified by 𝑇.
● Sufficient to ensure validity of a bivariate cross-covariance function 

for each pair of variables connected by 𝑇.
o Substantial dimension reduction when 𝑞 is large.
o Multivariate Matérn: 3𝑞 + 3𝑞(𝑞 − 1)/2 vs. Spanning tree: 3𝑞 + 3(𝑞 − 1)

● Parallelization using graph coloring 
o Only 2 colors because of a tree structure 
o All variables in yellow updated in parallel, 
o then all variables in blue in parallel



Particle size curves 

● 𝑛 = 3340 soil samples around Wisconsin and Michigan 
● A curve representing sqrt of the volume of particles across 𝑞 = 44 

different sizes at each location
● Misalignment at every other particle size 
● Aim to predict a curve at a new location 
● Choice of 𝑇: path graph



Particle size curves 

● Reduction in computation time
● Gain in prediction accuracy for misaligned locations

○ Silt dominating area; competitors underestimate volume of coarse particles 



Particle size curves 

● Separable spacetime model and independent univariate model 
struggle to find hotspots rich with medium or large sand.
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Tree species co-occurrence

● 𝑞 = 27 tree species occurrence data at 𝑛 = 3663 locations around New 
England

● Inter-variable graph created based on field knowledge whose weights 
are defined by closeness in a space of trees’ resistance to drought and 
wood density. 



Tree species co-occurrence

● Choice of 𝑇: minimum spanning tree with
○ negative weights 
○ negative absolute correlations

● Reduction in computation time



Tree species co-occurrence

● Gain in prediction accuracy for moderately rare species 
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Tree species co-occurrence

● Similar prediction performance for frequently observed species 



Tree species co-occurrence

● Factor model helps the most for extremely rare species 



Future direction

● Using a minimum spanning tree can be too restrictive; combine 
results over multiple minimum spanning trees 

● Choice of a minimum spanning tree can be arbitrary when graph 
structure is not intrinsic among variables; alternative ways to infer 
inter-variable relationships? 

● With fixed covariance parameters, MCMC can be avoided (predictive 
stacking; Zhang et al. 2023). 

Happy to hear your insight/suggestions/feedback!
bjin9@jh.edu

mailto:bjin9@jh.edu
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