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Motivation

Spatial distribution of particle size curves (88 particle sizes, 3340
samples)

Tree species co-occurrence analysis (96 species, 78804 samples)
Air quality monitoring, spatial transcriptomics, spatial proteomics,
etc.

We want a scalable

and interpretable = Y j s ;«,’

Tsuga canadensis Abies balsamea

method for highly  «
multivariate (q > 30) =
and large (n > 10000) =
geostatistical data.
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Existing multivariate methods

e Spatial factor model (+ NNGP)
- Finley et al. (2015), Tikhonov et al. (2020), Doser et al. (2022)
- Difficult to interpret (a latent process w is a linear combination of independent
latent processes...
. Difficult to fix or assign priors to hyperparameters
- Choosing the ‘right’ number of factors is another area of research
e Parsimonious cross-covariance matrix function (+ NNGP)
- Bevilacqua et al. (2015), Peruzzi (2024)
- Computational burden and dimension increases quadratically (or more) with q
o ‘treed” DAG
- Peruzziand Dunson (2022)
- Multiresolution/ recursive scheme scales poorly with q
e Process-level conditional independence using a graphical model
- Deyetal. (2022)
- Exhaustive stochastic exploration over sparse graph space is infeasible




Spanning tree-based approach

Construct a multivariate process exploiting variable-level conditional
independence relationships implied by a data generating inter -
variable graph.

Consider a minimum spanning tree as the backbone of the inter-
variable graph.

Spanning trees are economical to handle

o Span all q variables
o Include only g — 1 edges




Spanning tree-based approach

« The spanning tree T on variables + a sparse DAG on locations
o Fory(s) = (y1(5), ..., 7 ()

Fy(s)) = Fr )|y (N(s))) 1_[ f(e®|ye(N(S)), y;(8), y;(N,(s)))
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- Variable k is independent to other @ : s
variables conditional on variable j "0 @. :
connected by T
Different sets of neighbors from @ i

the parent variable
Useful when data are misaligned




Properties

Any variable can serve as the root; No arbitrary variable ordering.
Resulting multivariate process preserves process-level conditional
independence specified by T.

Sufficient to ensure validity of a bivariate cross-covariance function
for each pair of variables connected by T. @
Substantial dimension reduction when gq is large. o0 00
- Multivariate Matérn: 3q + 3q(q — 1)/2 vs. Spanning tree: 3q + 3(q — 1)
Parallelization using graph coloring O 000
Only 2 colors because of a tree structure ® 00 00

All variables in yellow updated in parallel,
then all variables in blue in parallel O OO0O0O0O000O0
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@ ©




Particle size curves

n = 3340 soil samples around Wisconsin and Michigan

A curve representing sqrt of the volume of particles across q = 44
different sizes at each location

Misalignment at every other particle size

Aim to predict a curve at a new location

Choice of T: path graph
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Particle size curves ..
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Particle size curves

o Separable spacetime model and independent univariate model
struggle to find hotspots rich with medium or large sand.
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SPDE-spacetime === Univariate
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Tree species co-occurrence

g = 27 tree species occurrence data at n = 3663 locations around New

England
Inter-variable graph created based on field knowledge whose weights

are defined by closeness in a space of trees’ resistance to drought and
WOOd denSIty z Picea abies Fraxinus americana
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Tree species co-occurrence

o Choice of T: minimum spanning tree with
o negative weights
o negative absolute correlations

o Reduction in computation time

sisuapeued EﬁnSj_
sisuapeued ebns|

PR Quercy, Querey,
Univariate - Salbgo——or" S albg

Prunus virginiana 5 i Prunus virginiana

LMC:k5 -
Multivariate:correlation 4

Multivariate 4

AN
o-

Ratio of total run time to g univariate models

R e &

eonelb e92d

|Correlation| _

01 02 03 04




Tree species co-occurrence

o Gain in prediction accuracy for moderately rare species
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Tree species co-occurrence

o Gain in prediction accuracy for moderately rare species

Picea abies Fraxinus americana
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Tree species co-occurrence

o Gain in prediction accuracy for moderately rare species

Prunus virginiana Populus balsamifera
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Tree species co-occurrence

o Gain in prediction accuracy for moderately rare species

Populus balsamifera Thuja occidentalis
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Tree species co-occurrence

o Similar prediction performance for frequently observed species
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Tree species co-occurrence

o Factor model helps the most for extremely rare species
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Future direction

Using a minimum spanning tree can be too restrictive; combine
results over multiple minimum spanning trees

Choice of a minimum spanning tree can be arbitrary when graph
structure is not intrinsic among variables; alternative ways to infer
inter-variable relationships?

With fixed covariance parameters, MCMC can be avoided (predictive
stacking; Zhang et al. 2023).

Happy to hear your insight/suggestions/feedback!
bjino@jh.edu
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